Subphenotyping depression using machine learning and electronic health records

CHIP Contributors: Yuan Luo, PhD


To identify depression subphenotypes from Electronic Health Records (EHRs) using machine learning methods, and analyze their characteristics with respect to patient demographics, comorbidities, and medications.

Materials and methods
Using EHRs from the INSIGHT Clinical Research Network (CRN) database, multiple machine learning (ML) algorithms were applied to analyze 11 275 patients with depression to discern depression subphenotypes with distinct characteristics.

Using the computational approaches, we derived three depression subphenotypes: Phenotype_A (n = 2791; 31.35%) included patients who were the oldest (mean (SD) age, 72.55 (14.93) years), had the most comorbidities, and took the most medications. The most common comorbidities in this cluster of patients were hyperlipidemia, hypertension, and diabetes. Phenotype_B (mean (SD) age, 68.44 (19.09) years) was the largest cluster (n = 4687; 52.65%), and included patients suffering from moderate loss of body function. Asthma, fibromyalgia, and Chronic Pain and Fatigue (CPF) were common comorbidities in this subphenotype. Phenotype_C (n = 1452; 16.31%) included patients who were younger (mean (SD) age, 63.47 (18.81) years), had the fewest comorbidities, and took fewer medications. Anxiety and tobacco use were common comorbidities in this subphenotype.

Computationally deriving depression subtypes can provide meaningful insights and improve understanding of depression as a heterogeneous disorder. Further investigation is needed to assess the utility of these derived phenotypes to inform clinical trial design and interpretation in routine patient care.

Full Citation

Xu, Z, Wang, F, Adekkanattu, P, et al. Subphenotyping depression using machine learning and electronic health records. Learn Health Sys. 2020; 4:e10241.

« Back To Publications View Article

Note: Publications may be freely available or require a fee to access on the journal’s website.

Join Us

CHIP collaborators are part of the public, private and nonprofit sectors and have an interest in working toward a world where health outcomes are improved because data is used effectively.

Get in Touch

Join Our Mailing List

Don't Forget To Connect